公務(wù)員期刊網(wǎng) 論文中心 正文

數(shù)據(jù)挖掘技術(shù)的高校思想政治教育運(yùn)用

前言:想要寫出一篇引人入勝的文章?我們特意為您整理了數(shù)據(jù)挖掘技術(shù)的高校思想政治教育運(yùn)用范文,希望能給你帶來(lái)靈感和參考,敬請(qǐng)閱讀。

數(shù)據(jù)挖掘技術(shù)的高校思想政治教育運(yùn)用

摘要:主要研究數(shù)據(jù)挖掘中的聚類技術(shù)在高校思想政治教育管理中的應(yīng)用。通過(guò)對(duì)輔導(dǎo)員“工作考核量化表”的數(shù)據(jù)分析,按照數(shù)據(jù)挖掘的聚類分析過(guò)程,對(duì)各種數(shù)據(jù)進(jìn)行預(yù)處理,使用劃分方法中的k均值算法,實(shí)現(xiàn)了數(shù)據(jù)的聚類分析,最終得到具有指導(dǎo)價(jià)值的結(jié)果。

關(guān)鍵詞:數(shù)據(jù)挖掘;聚類算法;思政教育;應(yīng)用研究

0引言

隨著我國(guó)信息化建設(shè)進(jìn)程的不斷推進(jìn),許多高校都已經(jīng)建立起各類基于業(yè)務(wù)的數(shù)據(jù)庫(kù)用于日常管理,作為應(yīng)用廣泛的新興學(xué)科,數(shù)據(jù)挖掘技術(shù)在高校教育信息化中的應(yīng)用前景較好,為高校的管理、建設(shè)、服務(wù)過(guò)程的絕學(xué)提供了全新而科學(xué)的分析途徑。在新形勢(shì)下,高校學(xué)生思政管理工作面臨著巨大挑戰(zhàn),所以適時(shí)不斷調(diào)整思想工作的途徑,加強(qiáng)先進(jìn)經(jīng)驗(yàn)的交流,可以有效的提高高校思政工作的效果,對(duì)此,本文借助數(shù)據(jù)挖掘技術(shù)進(jìn)行嘗試,通過(guò)聚類結(jié)果分析,所挖掘到的信息對(duì)學(xué)生工作具有一定的參考價(jià)值。

1數(shù)據(jù)挖掘技術(shù)在思想政治教育中的實(shí)際應(yīng)用

1.1思想政治教育管理隨著高等教育的不斷發(fā)展與普及,給高校思想政治教育帶來(lái)一定挑戰(zhàn),在通常情況下,學(xué)校相關(guān)部門會(huì)對(duì)教育管理工作進(jìn)行數(shù)據(jù)收集,但是目前對(duì)這些數(shù)據(jù)的處理還處于底層的查找與簡(jiǎn)單分析階段,不能夠挖掘出其中的價(jià)值。為了更加具體的了解思政教育工作者的工作情況,學(xué)校每學(xué)期會(huì)組織學(xué)生對(duì)輔導(dǎo)員的工作進(jìn)行評(píng)議,填寫輔導(dǎo)員“工作考核量化表”如何從中提取有價(jià)值的信息,對(duì)高校思想政治教育有非常重要的意義[1]。1.2解決方案數(shù)據(jù)挖掘?qū)儆谝粋€(gè)方案得到肯定的過(guò)程,是數(shù)據(jù)分析研究的深層系手段,將數(shù)據(jù)挖掘技術(shù)運(yùn)用到輔導(dǎo)員工作考核中具有特別意義。例如:通過(guò)數(shù)據(jù)挖掘技術(shù)手段分析“輔導(dǎo)員工作考核量化表”中的數(shù)據(jù),可以了解“某所高校思政管理整體水平”,在管理中“哪些方面做得好,哪些方面做得不到位”等相關(guān)問(wèn)題。通過(guò)這些結(jié)論進(jìn)一步完善高校思政教育管理。本文提出運(yùn)用聚類分析的數(shù)據(jù)挖掘技術(shù)對(duì)輔導(dǎo)員的工作成效數(shù)據(jù)進(jìn)行分析,將大批的數(shù)據(jù)轉(zhuǎn)換為聚類結(jié)果,從而更好的對(duì)數(shù)據(jù)加以利用。數(shù)據(jù)挖掘過(guò)程.步驟1:明確數(shù)據(jù)挖掘的對(duì)象和主要目的,通過(guò)數(shù)據(jù)挖掘雖然不能預(yù)測(cè)最終結(jié)果,但是可以對(duì)所研究的問(wèn)題進(jìn)行預(yù)測(cè),所以挖掘目標(biāo)的確定是數(shù)據(jù)挖掘的關(guān)鍵步驟[2]。步驟2:數(shù)據(jù)采集,該過(guò)程的任務(wù)比較繁重,并且需要時(shí)間比較多。在品勢(shì)的教育管理中,要認(rèn)真的收集數(shù)據(jù)信息,一部分?jǐn)?shù)據(jù)是直接可以拿到的,一部分?jǐn)?shù)據(jù)則需要通過(guò)調(diào)研才能獲得。步驟3:數(shù)據(jù)預(yù)處理,將收集到的數(shù)據(jù)轉(zhuǎn)變成可分析的數(shù)據(jù)模型,該模型是根據(jù)算法來(lái)準(zhǔn)備的,不同的算法對(duì)數(shù)據(jù)模型的要求是不一樣的。步驟4:數(shù)據(jù)類聚挖掘,通過(guò)類聚挖掘能夠?qū)?shù)據(jù)模型劃分為相似的多個(gè)組,該過(guò)程主要為數(shù)據(jù)模型的輸入過(guò)程以及聚類算法的選擇進(jìn)行實(shí)現(xiàn)。步驟5:聚類結(jié)果分析,該過(guò)程主要分析研究聚類數(shù)據(jù)挖掘之后得到的多個(gè)組屬性。步驟6:知識(shí)應(yīng)用,將研究所得的信息集成到輔導(dǎo)員的管理教育環(huán)節(jié)中,思政工作者通過(guò)該結(jié)論促進(jìn)教學(xué)管理,形成良好的管理方針[3]。

2數(shù)據(jù)挖掘技術(shù)在思政教育工作中具體方案實(shí)施

2.1確定數(shù)據(jù)挖掘?qū)ο笫占⒄砟炒髮W(xué)2017年“輔導(dǎo)員工作考核量化表”,整理其中關(guān)于輔導(dǎo)員教育管理的120張考核量化表,嘗試解答高校思政教育中存在的問(wèn)題,經(jīng)過(guò)對(duì)有價(jià)值數(shù)據(jù)的挖掘,得出結(jié)論為教學(xué)管理帶來(lái)有效的指導(dǎo)價(jià)值。2.2數(shù)據(jù)采集從學(xué)校學(xué)生工作處,搜集2017年度“輔導(dǎo)員工作考核量化表”。2.3數(shù)據(jù)預(yù)處理“輔導(dǎo)員工作考核量化表”要求輔導(dǎo)員在“堅(jiān)持標(biāo)準(zhǔn),獎(jiǎng)懲分明,客觀公正的對(duì)待每一位學(xué)生。”“認(rèn)真做好勤工助學(xué)活動(dòng)。”“正確分析學(xué)生的思想動(dòng)態(tài)”等幾個(gè)指標(biāo)項(xiàng)目中,根據(jù)輔導(dǎo)員的實(shí)際工作表現(xiàn),劃分為“優(yōu)秀、良好、合格、較差、差”五等類型等級(jí)。最終獲得比較完整的考核記錄工作考核量化表117張。2.4數(shù)據(jù)轉(zhuǎn)換在工作考核量化表中考核等級(jí)的項(xiàng)目共15項(xiàng),如何將數(shù)據(jù)合成到一個(gè)聚類分析的模式中非常關(guān)鍵,按照“管理態(tài)度”“管理能力”“管理方法”“管理效果”四方面屬性來(lái)對(duì)工作考核量化表中的數(shù)據(jù)進(jìn)行重新組合:其中“管理態(tài)度”=(堅(jiān)持標(biāo)準(zhǔn)+與同學(xué)之間感情融洽+言談得體+辦事客觀)/4“管理能力”=(準(zhǔn)確掌握貧困生情況+準(zhǔn)確掌握特殊群體+嚴(yán)格教育與查出違紀(jì)學(xué)生+勝任工作+組織學(xué)生做好評(píng)優(yōu)工作)/5“管理方法”=(每周3次以上探入班級(jí)宿舍+積極參加檢查學(xué)生早操+學(xué)生獎(jiǎng)學(xué)金發(fā)放到位+有準(zhǔn)備的與學(xué)生談話+檢查宿舍衛(wèi)生)/5“管理效果”=(積極參加團(tuán)活班會(huì)+課下了解學(xué)生思想狀況+評(píng)論與建議)/3通過(guò)以上處理,可以將工作考核量化表關(guān)系到的十五個(gè)考評(píng)等級(jí)統(tǒng)一演化到四個(gè)屬性中。然后針對(duì)117份數(shù)據(jù)樣本信息的4個(gè)屬性采取聚類挖掘的方法進(jìn)行研究。通過(guò)樣本預(yù)處理得到數(shù)據(jù)樣本.2.5數(shù)據(jù)聚類挖掘數(shù)據(jù)的聚類挖掘采用劃分方法中的經(jīng)典算法K均值以及K中心點(diǎn)算法,其中K代表類別個(gè)數(shù)(K=3),主要挖掘思路為:將n個(gè)對(duì)象劃分為K個(gè)簇,使同一簇中的對(duì)象具有較高的相似度,K均值算法主要是使用簇中對(duì)象的平均值作為參考值。K均值算法的復(fù)雜度可以通過(guò)進(jìn)一步計(jì)算得出O(nkt),n代表簇的數(shù)量,t代表反復(fù)迭代的次數(shù),在一般情況下,k與t都會(huì)遠(yuǎn)小于n。針對(duì)所要分析的數(shù)據(jù)樣本,四類屬性都是通過(guò)數(shù)據(jù)轉(zhuǎn)換而得到的,所要的數(shù)據(jù)都是算術(shù)平均值,所以產(chǎn)生孤立點(diǎn)的可能性非常小,最終選用K均值的算法來(lái)運(yùn)用于本研究的數(shù)據(jù)聚類中。一般情況下,K均值算法當(dāng)局部取得最優(yōu)解時(shí)會(huì)終止,所以一定要對(duì)數(shù)據(jù)樣本進(jìn)行改進(jìn),考察數(shù)據(jù)樣本信息的綜合比例分布情況,采取進(jìn)一步措施對(duì)K均值算法進(jìn)行改進(jìn)得到三個(gè)等級(jí)樣本,3數(shù)據(jù)挖掘算法流程3.1算法實(shí)現(xiàn)的流程算法實(shí)現(xiàn)流程。在K均值算法中,函數(shù)LoadPatterns的作用主要是將數(shù)據(jù)信息裝載到程序中,目的是為了從數(shù)據(jù)庫(kù)文件中讀取相關(guān)信息,并且將文件中的數(shù)據(jù)轉(zhuǎn)換成樣本數(shù)組。函數(shù)RunK-Means()的作用是算法的主程序,將所有對(duì)象同簇中心距離進(jìn)行對(duì)比,然后將對(duì)象劃分到最近的簇中。函數(shù)Show-Centers()代表算法所描述的聚類中心。函數(shù)ShowClusters()表示樣本的標(biāo)識(shí)符號(hào)[4]。3.2主控程序RunKMeans()的調(diào)用從而找到最短距離的簇,然后運(yùn)用DistributeSam-ples()將所有對(duì)象劃分到最近的簇當(dāng)中,算出所有簇中對(duì)象的平均值,作為新的質(zhì)心,如果所有新的質(zhì)心不發(fā)生改變,則聚類結(jié)束。

3聚類結(jié)果分析

本文運(yùn)用K均值算法對(duì)120個(gè)數(shù)據(jù)通過(guò)數(shù)據(jù)轉(zhuǎn)換得到的樣本數(shù)據(jù)進(jìn)行分析,對(duì)管理態(tài)度、管理能力、管理方法、管理效果4個(gè)屬性進(jìn)行數(shù)據(jù)挖掘聚類,設(shè)置初始k值為3,最終挖掘到的結(jié)果.根據(jù)以上結(jié)果,每個(gè)簇所包括的數(shù)據(jù)樣本最后的比例分布范圍如下:簇1(較好)共計(jì)36個(gè)樣本,刪除定義樣本,剩余35個(gè)數(shù)據(jù)樣本,占35/117=30%。簇2(中等)共計(jì)74個(gè)樣本,刪除一個(gè)標(biāo)準(zhǔn)樣本,剩余73個(gè)數(shù)據(jù)樣本,占73/117=62%。簇3(較差)共計(jì)10個(gè)樣本,刪除一個(gè)標(biāo)準(zhǔn)樣本,剩余9個(gè)數(shù)據(jù)樣本,占9/117=8%“管理態(tài)度”=0.77*30%+0.61*62%+0.31*8%=0.634“管理能力”=0.77*30%+0.57*62%+0.31*8%=0.6092“管理方法”=0.74*30%+0.54*62%+0.28*8%=0.5792“管理效果”=0.79*30%+0.56*62%+0.30*8%=0.6082從總體得分由高到低排序?yàn)椋汗芾響B(tài)度、管理能力、管理效果、管理方法。總體上證明該校的思政管理水平屬于中等偏上的。

4總結(jié)

數(shù)據(jù)挖掘,主要是通過(guò)對(duì)原始數(shù)據(jù)的分析、提煉,找到最優(yōu)價(jià)值的信息的過(guò)程,屬于一類深層次的數(shù)據(jù)分析方法。將數(shù)據(jù)挖據(jù)技術(shù)運(yùn)用在高校思想政治教育中,有利于對(duì)思政教育工作者的多項(xiàng)工作指標(biāo)進(jìn)行分析,對(duì)其綜合能力進(jìn)行評(píng)定,為高校進(jìn)一步完善思想政治教育管理決策,準(zhǔn)確定位人才培養(yǎng)目標(biāo),加強(qiáng)教育團(tuán)隊(duì)建設(shè)提供有效的數(shù)據(jù)依據(jù)。

參考文獻(xiàn)

[1]劉強(qiáng)珺,丁養(yǎng)斌.基于數(shù)據(jù)挖掘技術(shù)的高校思政教育管理研究[J].電子測(cè)試,2015(1):101-103.

[2]范宸西,韓松洋.思想政治教育在高校內(nèi)涵式發(fā)展中的重新定位[J].中共珠海市委黨校珠海市行政學(xué)院學(xué)報(bào),2015(4):50-54.

[3]吳小龍,張麗麗.大數(shù)據(jù)視角下高校思想政治理論教育創(chuàng)新[J].江西理工大學(xué)學(xué)報(bào),2017(8):20-23.

[4]李平榮.大數(shù)據(jù)時(shí)代的數(shù)據(jù)挖掘技術(shù)與應(yīng)用[J].重慶三峽學(xué)院學(xué)報(bào),2014(5):159.

[5]舒正渝.淺談數(shù)據(jù)挖掘技術(shù)及其應(yīng)用[J].中國(guó)西部科技,2010(2):148-150.

作者:關(guān)翠玲 單位:陜西財(cái)經(jīng)職業(yè)技術(shù)學(xué)院

主站蜘蛛池模板: 极品丝袜乱系列目录全集| 青青操免费在线视频| 精品一区精品二区制服| 成人在线手机视频| 啊轻点灬大ji巴黑人太粗| 中文字幕制服丝袜| 美女视频黄的全免费视频网站| 韩国免费A级作爱片无码| 极品馒头一线天粉嫩| 国产爽的冒白浆的视频高清| 亚洲av午夜成人片| 龙珠全彩里番acg同人本子 | 青青青国产依人在在线观看高| 日韩精品人妻系列无码专区| 国产女人aaa级久久久级| 久久亚洲春色中文字幕久久久| 草莓视频黄瓜视频| 成人影院wwwwwwwwwww| 十九岁日本电影免费完整版观看| 一卡2卡3卡4卡免费高清| 男人扒开女人下面狂躁动漫版| 够够了太深了h1v3| 国产一级视频免费| 中文字幕色婷婷在线精品中| 精品精品国产欧美在线观看| 女人18毛片a级毛片免费视频 | 色综合色综合色综合色综合网| 无码AV中文一区二区三区| 国产农村妇女精品一二区| 丰满少妇大力进入| 精品国产VA久久久久久久冰| 天天影视综合色| 亚洲国产日韩欧美在线as乱码| 91色视频在线| 成年大片免费视频| 伊人久久综在合线亚洲91| 4399理论片午午伦夜理片| 日韩高清免费在线观看| 四虎成人精品无码永久在线| aaaaaa级特色特黄的毛片| 欧美另类69xxxxxhd|