公務(wù)員期刊網(wǎng) 論文中心 正文

小微企業(yè)信用風(fēng)險因素識別淺析

前言:想要寫出一篇引人入勝的文章?我們特意為您整理了小微企業(yè)信用風(fēng)險因素識別淺析范文,希望能給你帶來靈感和參考,敬請閱讀。

小微企業(yè)信用風(fēng)險因素識別淺析

摘要:小微企業(yè)在促進經(jīng)濟增長、增加就業(yè)機會和創(chuàng)造產(chǎn)業(yè)等方面起到了重要作用。然而,小微企業(yè)的信用風(fēng)險較高,給銀行造成貸款違約損失的可能性較大。文章以188家小微企業(yè)為研究對象,通過隨機森林方法對影響小微企業(yè)信用風(fēng)險的關(guān)鍵因素進行識別,并確定關(guān)鍵指標(biāo)的影響程度和影響方向。結(jié)果表明:水電費發(fā)生異常的次數(shù)、借新還舊次數(shù)、還款計劃變更次數(shù)和民事訴訟次數(shù)等企業(yè)行為信息是影響小微企業(yè)信用風(fēng)險的關(guān)鍵因素,且均對企業(yè)信用風(fēng)險具有正向影響。

關(guān)鍵詞:小微企業(yè);隨機森林;信用風(fēng)險

1引言

近年來,隨著我國經(jīng)濟結(jié)構(gòu)和產(chǎn)業(yè)結(jié)構(gòu)的不斷優(yōu)化調(diào)整,以及經(jīng)濟向內(nèi)生增長轉(zhuǎn)變,小微企業(yè)在促進經(jīng)濟增長、增加就業(yè)機會和創(chuàng)造產(chǎn)業(yè)等方面發(fā)揮了重要的作用。然而,市場經(jīng)營環(huán)境的不斷改變,致使小微企業(yè)逾期貸款不斷增多,商業(yè)銀行的貸款業(yè)務(wù)面臨的風(fēng)險加大。因此,識別影響小微企業(yè)信用風(fēng)險的關(guān)鍵因素、持續(xù)動態(tài)的捕獲貸款企業(yè)的風(fēng)險信號、提前發(fā)現(xiàn)和判別企業(yè)風(fēng)險,做出預(yù)警提示,減少因小微企業(yè)信用風(fēng)險導(dǎo)致的貸款違約損失具有重要的意義。眾多學(xué)者開展了小微企業(yè)信用風(fēng)險因素識別的研究,如曹明生(2015)[1]使用Logistic模型研究影響小微企業(yè)信用風(fēng)險的因素,研究發(fā)現(xiàn)企業(yè)財務(wù)信息對小微企業(yè)信用風(fēng)險具有重要影響。趙玉龍等(2017)[2]的研究認(rèn)為企業(yè)自身特點、企業(yè)過度擴張和企業(yè)負(fù)債等是影響小微企業(yè)信用風(fēng)險的主要因素。滿向昱等(2018)[3]采用Logistic模型進行研究,結(jié)果表明流動資產(chǎn)周轉(zhuǎn)率、銀行負(fù)債資產(chǎn)比等企業(yè)財務(wù)指標(biāo)為影響我國中小微企業(yè)信用風(fēng)險的重要因素。遲國泰等(2019)[4]實證分析小企業(yè)貸款數(shù)據(jù),結(jié)果表明速動比率、總資產(chǎn)增長率等企業(yè)財務(wù)信息顯著影響小企業(yè)信用風(fēng)險。孫福兵等(2020)[5]運用Probit模型對小型農(nóng)業(yè)企業(yè)進行信用風(fēng)險影響因素識別,研究發(fā)現(xiàn)資產(chǎn)負(fù)債、營業(yè)利潤率等對信用風(fēng)險具有重要影響。已有文獻(xiàn)的研究中,一方面,多將企業(yè)財務(wù)信息作為關(guān)注對象,對企業(yè)行為信息關(guān)注較少;另一方面,多使用傳統(tǒng)的回歸分析方法,極少使用流行的機器學(xué)習(xí)方法。因此,文章將企業(yè)行為信息引入小微企業(yè)信用風(fēng)險因素識別研究中,并使用隨機森林方法這一機器學(xué)習(xí)方法,以便及早發(fā)現(xiàn)違約的前期預(yù)警信號,在企業(yè)違約前提前做好干預(yù)措施,從而有效管控小微企業(yè)的信用風(fēng)險。

2數(shù)據(jù)選取與描述

文章的研究對象是2020年1月至2020年12月在某商業(yè)銀行需要償還貸款的小微企業(yè)。文章選擇的小微企業(yè)為企業(yè)規(guī)模符合國家四部委規(guī)定的小型和微型企業(yè)認(rèn)定標(biāo)準(zhǔn)的企業(yè)。對于因變量,文章將及時償還貸款的企業(yè)認(rèn)定為“未違約企業(yè)”,記為0;將到期未償還貸款或延期償還貸款的企業(yè)認(rèn)定為“違約企業(yè)”,記為1。文章獲取的小微企業(yè)總樣本數(shù)為188個,未違約的樣本數(shù)為144個,違約的樣本數(shù)為44個,樣本的違約率為23􀆰4%。自變量分為兩類:第一類為企業(yè)財務(wù)變量,包含資產(chǎn)負(fù)債率、利潤增長率、速動比率、凈資產(chǎn)收益率和營業(yè)毛利潤率等;第二類為企業(yè)行為變量,包含企業(yè)過去12個月水電費發(fā)生異常的次數(shù)、過去12個月繳納稅金發(fā)生異常的次數(shù)、借新還舊次數(shù)、還款計劃變更次數(shù)和民事訴訟的次數(shù)等。

3實證研究

隨機森林方法是當(dāng)下流行的機器學(xué)習(xí)方法。它將若干個分類樹組合成隨機森林,顯著提高了預(yù)測精度。文章使用隨機森林方法對數(shù)據(jù)進行擬合,需要說明的是在擬合過程中需要對每次拆分時隨機選取變量個數(shù)以及樹的棵數(shù)等參數(shù)進行設(shè)定。文章通過設(shè)定不同的分叉樹和樹的棵數(shù)確定最優(yōu)的隨機變量個數(shù)和樹的棵數(shù),最終隨機變量個數(shù)為5,樹的棵數(shù)為1000。表2報告了變量重要性度量結(jié)果。由表2可知,重要性權(quán)重超過10%的指標(biāo)有4個,且全部為企業(yè)行為變量,分別為:過去12個月水電費發(fā)生異常的次數(shù)(22􀆰90%)、借新還舊次數(shù)(11􀆰55%)、還款計劃變更次數(shù)(17􀆰42%)和民事訴訟的次數(shù)(13􀆰65%),這4個變量均屬于企業(yè)行為變量,且這4個指標(biāo)的重要性權(quán)重之和超過了65%。這說明,企業(yè)經(jīng)營行為是否合規(guī)對小微企業(yè)是否違約具有重要影響。選取重要性權(quán)重最大的4個變量:12個月水電費發(fā)生異常的次數(shù)、借新還舊次數(shù)、還款計劃變更次數(shù)和民事訴訟的次數(shù),構(gòu)建偏相關(guān)圖,考察4個變量對企業(yè)違約概率的影響方向和大小,如圖1所示。由圖1可知,12個月水電費發(fā)生異常的次數(shù)、借新還舊次數(shù)、還款計劃變更次數(shù)和民事訴訟的次數(shù)4個變量的增加都會顯著增加企業(yè)違約概率,這說明12個月水電費發(fā)生異常的次數(shù)、借新還舊次數(shù)、還款計劃變更次數(shù)和民事訴訟的次數(shù)4個變量對企業(yè)違約具有顯著的正向影響。為了更進一步研究企業(yè)行為變量對小微企業(yè)信用風(fēng)險評估的重要性,本文分別構(gòu)建不包含企業(yè)行為變量的數(shù)據(jù)集和包含企業(yè)行為變量的數(shù)據(jù)集,隨機將數(shù)據(jù)集分成兩部分(80%的數(shù)據(jù)集用作訓(xùn)練數(shù)據(jù)集,20%用作測試數(shù)據(jù)集)進行100次模擬試驗,以證明加入企業(yè)行為變量是否能提高模型預(yù)測的準(zhǔn)確性。表3報告了模型預(yù)測的結(jié)果。由表3可知,加入企業(yè)行為變量后,預(yù)測準(zhǔn)確率由0􀆰946提高到0􀆰980,AUC值也由0􀆰752提高到0􀆰926;另外,對于第一類錯誤率和第二類錯誤率,加入企業(yè)行為變量后的第一類錯誤率和第二類錯誤率最低。因此,加入企業(yè)行為變量可以大大提高模型的預(yù)測性能。

4結(jié)論與啟示

文章采用隨機森林方法實證研究了影響小微企業(yè)信用風(fēng)險的關(guān)鍵因素,實證結(jié)果表明:12個月水電費發(fā)生異常的次數(shù)、借新還舊次數(shù)、還款計劃變更次數(shù)和民事訴訟的次數(shù)等企業(yè)行為變量是影響小微企業(yè)信用風(fēng)險最關(guān)鍵的4個變量,且這4個變量均對企業(yè)違約具有正向影響。同時,進一步驗證了企業(yè)行為變量能夠顯著提高小微企業(yè)信用風(fēng)險評估的預(yù)測精度。這為商業(yè)銀行對小微企業(yè)信用狀況的準(zhǔn)確判斷提供了一定的借鑒與參考。

作者:呂爽 單位:煙臺嘉信有限責(zé)任會計師事務(wù)所

相關(guān)熱門標(biāo)簽
主站蜘蛛池模板: 又粗又硬又黄又爽的免费视频 | 97在线观看视频| 一区二区在线视频观看| 色综合久久加勒比高清88| 日韩av片无码一区二区三区不卡| 国产成人亚洲毛片| 久久天天躁狠狠躁夜夜躁2014| 黑人巨大videos极度另类| 理论片高清免费理论片| 好男人网官网在线观看| 免费国产精品视频| 99精品免费观看| 欧美视频在线免费播放| 国产精品无码久久av| 伊人色在线观看| JAPANESEHD熟女熟妇伦| 波多野结衣新婚被邻居| 国产麻豆videoxxxx实拍| 亚洲图片中文字幕| ww在线观视频免费观看| 日韩精品无码一本二本三本| 国产精品无码一区二区三区不卡| 亚洲国产品综合人成综合网站| 五月天久久婷婷| 旧里番洗濯屋1一2集无删减| 国产免费福利片| 中文字幕一区二区精品区| 福利所第一导航| 国内精自视频品线六区免费| 亚洲国产精品免费视频| 久久国产真实乱对白| 日本卡一卡二新区| 厨房娇妻被朋友跨下挺进在线观看| xxxx俄罗斯大白屁股| 欧美精品黑人粗大视频| 国产成年无码v片在线| 久久99精品久久久久久噜噜 | 狠狠爱无码一区二区三区| 国内精品久久久久久| 亚洲av丰满熟妇在线播放| 邻居的又大又硬又粗好爽|